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series. The procedure is a generalization of the one 
described for two terms in one dimension.* 

Each term in the Fourier series determines an index 
i by means of (14). For a fixed # and each such i, 
the number mi is defined to be that  integer which is 
nearest to 

hix~, ÷ kiy~, ÷ l i%- Ui . (35) 

Consequently, the plane 

hix + ]ciY + liz : mi + Ui (36) 

is that  plane of the family (22) which passes nearest 
to the point x~, y,, zz, i.e. the maximum of 

ci { COS 2z~(hix+lciy+liz) I 
sin 2~ (hix + k~y + liz) 

(the cosine or sine is used according as Ci = ]Ch~kizi] 
or Ci--IC~kizi]) closest to x~, y~, z~ is in the plane 
(36). As in one dimension, the term 

ci { COS 2ze(hix+lc~y+liz) t 
sin 2ze(hix + kiy + l~z) 

is replaced by its Taylor expansion in the region of the 
plane (36) for each i, and the results substituted into 
(12). The unique maximum of the resulting function 
of the second degree is readily found by the standard 

* The refinement procedure may  be applied no mat te r  how 
the  approximate locations x~, yg, z~ have been obtained. 

method of partial differentiation to be the solution, 
x, y, z, of 

x.~ Cih~ + yZ, Cihi]Q ÷ z_~  Cihi l  i = . ~  Cih  i ( m  i ÷ r]i ) , 
i i i i 

i i ~ i "  , (37) 

i--- 1 ,2,3,  . . . .  

Using the solution x, y, z of (37) instead of x~, y~, z~, 
the refinement procedure may be repeated to yield a 
still better approximation to the location of the 
maximum, and the cycle may be repeated again and 
again. This iterative process ordinarily converges 
within ten cycles. The final values of the triples 
x, y, z, so obtained, as # ranges through the values 
1, 2, 3, . . . ,  are the coordinates of the most prominent 
maxima of (12), arranged approximately in decreasing 
order. 

The procedure described herein has been pro- 
grammed for I.B.M. equipment by .-Mr Peter O'Hara 
of the Computation Laboratory of the National 
Bureau of Standards. His excellent cooperation is 
deeply appreciated. 
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Application of Statist ical  Methods to the Naphthalene Structure 

BY J. KARLE AND H. HAUI~TI~IAN 

U.S. Naval Research Laboratory, Washington 25, D.C., U.S .A.  

(Received 7 November 1952) 

A method for locating the principal maxima of a Fourier series was applied to a function de- 
scribing the probability distribution for interatomic vectors using the data of Abrahams, Robertson 
& White for naphthalene. A structure comparable to that found by Abrahams et al. was obtained. 
No attempt was, however, made to obtain the ultimate accuracy inherent in this method. 

Introduction 

This paper concerns the application of the statistical 
methods developed in a previous paper (Hauptman 
& Karle, 1952) in order to determine the structure of 
the carbon frame in naphthalene. The principal maxima 
of formula (58) (Hauptman & Karle, 1952) expressing 
the probability distribution for interatomic vectors, 
have been located by a method described previously 
(Hauptman & Karle, 1953). The validity of the results 

therefore constitutes a test not only of the statistical 
method, but also of the method for locating the prin- 
cipal maxima of a Fourier Series. Since the X-ray 
scattering data of Abrahams, Robertson & White 
(1949) were used, a comparison with their results is 
significant. 

T r e a t m e n t  of data 
The logarithm of equation (58) (Hauptman & Karle, 
1952) may be expressed as the Fourier series 
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27 Cau cos 2ze(hx + ky+lz) = 
hk~ 

l IB 
2~u {[A-I / (1-B2)]  [I/(I_B2 ) 

[2 /B2-1  
-- [A-½~/(1-B2)] [V(I_B2 ) 

+ [ A - ~ / ( 1 - B 2 ) ]  [ ~/(1-B 2) 

q 
1/BJ cos 2~(hx + ky + lz) 

2/B 2] cos 47~(hx+ky+lz) 

(4/Ba-1/B)] 

× cos 6~(hx+ky+lz) 
[8/B 4 -8 /B  2 + 1 ] 

- -  [ A  - -  ~ V ( 1 - -  B21] [ ~/(1-B 2) - (8 /B ' -4 /B2 ) j  

× cos 87~(hx+ky+lz) 

+ [A_~I/(I_B2)] [16/BS-20/B3+5/B 
L 

l/e) 1 (1) 
where A = A(h, k, l) is a function of the observed 
intensity ]Fh~z[ ~ adjusted by a procedure to be de- 
scribed below, B=Bo(h , k, 1)=2fi(h , k, l)fj(h, k, 1)/a~., 

a2 = 27 f~(h, k, 1), fi(h, k, l) is the atomic scattering 
v - - - - ~ l  

factor of the vth atom and N is the total number of 
atoms per unit cell. The first, second, third, fourth or 
fifth terms of the right side of (1) will contribute to 
Chu depending on which ones of 1, 2, 3, 4 or 5 divide 
the greatest common divisor of h, k, and 1. For con- 
venience, the functions of B appearing in (1) were 
tabulated to four significant figures in the range 
0.000 < B < 0-500, AB = 0.001. In any given ease, 

- -  - -  . , k .  

therefore, the coefflcmnts of the cosine terms appearing 
in (1) are linear functions of A with coefficients that  
have been tabulated. 

The atomic scattering factors f~(s), where s =sin 0/2, 
have been tabulated in the range 0.000 _< s _< 1.500, 
As = 0-001, by interpolation from existing tables. The 
observed intensities Io(h, k, l) were expressed as func- 
tions of s and the entire interval of s was divided into 
9 sub-intervals, each corresponding to 100 intensities 
(except the last which contained only 32). Since 
<I(s)/eag.(s)> = 1" (Wilson, 1949), where I is the value 
of the intensity adjusted for scale and vibrational 
mbtion, the expression 

27 ea~(s) 
K~ - si-1 < s < s i 

- 27 i o ( s  ) , j = 1, 2, . . . ,  9 ,  (2) 
s]--I < s < sj 

is an average factor by which the observed intensities 
in each sub-interval could be multiplied in order to 
obtain the adjusted values. In practice, however, each 
of the 9 values of K obtained from (2) is plotted at the 
mid-point of the corresponding interval and a smooth 
curve K(s) is drawn among-the points, giving a scale 

* e = e ~ =  2 if k = 0  or h = l = 0 ;  otherwise e =  1. 

factor for each observed intensity. This procedure not 
only corrects for vibrational motion but puts the data 
on an absolute scale. The curve obtained for naphtha- 
lene appears in Fig. 1. I t  is noteworthy that  this curve 
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passes through unity at s = 0, showing that  the proce- 
dure of Robertson for adjusting to an absolute scale 
is in very good agreement with the statistical method. 
I t  is now possible to define A(h, k, l) of equation (1) 
by means of the adjusted intensities, 

A = A(h, k; l) = I(h, k, 1)/a2(h, k, 1). (3) 

Using these values of A and the tabulated values of B, 
the coefficients of Fourier series (1) were computed. 
With these values of the coefficients Chu, the proce- 
dure for locating the principal maxima of (1) was 
carried out. 

The reference mesh (Hauptman & Karle, 1953) was 
defined by the three families of planes 

Table 1. A row in the interatomic vector matrix corres- 
ponding to the two molecules in the unit cell 

The m triples de te rmine  points  on the  reference  mesh  closest 
to m a x i m a  of (1) 

A t o m  

A 
B 
C 
D 
E 

A '  
B '  
C' 
D '  
E '  

Molecule I A t o m  Molecule I I  
^ ^ 

ml m2 m3 ~1  m2 m3 

2 2 7 A I 1_~_ 9 
3 5 6 B 1 11 5 
2 4 2 Ca ~ ~ i 
2 8 19 D I 9 16 2 
1 7 16 E 1 9 4 1-5 

o Y~ ~ A ~ ~ 6 1-~ 
i i 3 B~ 12 10 5 
0 0 0 C~ 12 10 2 

0 18 6 E ;  8 1-2 
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Table  2. Approximate  trimetric coordinates obtained f rom the triples of molecule I in Table 1 and two refinements 
based on two different origins in the molecule 

For purposes of comparison all coordinates were related to the same origin after the refinement 

Approximate Refined (Ia) Refined (Ib) 
^ ^ ^ 

x y z x y z x y z 
A 0.1041 0.0828 0.3448 0.1182 0.1145 0.3449 0-1232 0.1136 0.3651 
B 0.1618 0.2354 0.2919 0.1558 0.2670 0.2470 0.1665 0.2587 0.2655 
C 0-1098 0.1953 0.0945 0.0930 0.1989 0.0778 0.0930 0.1989 0.0778 
D 0.1176 0.3528 --0.0559 0.1202 0.3456 --0.0446 0-1263 0.3500 --0.0264 
E 0.0655 0.3102 --0"2033 0"0685 0.2977 --0.2067 0.0628 0-2842 --0.2095 
A" --0.0442 0.1149 --0.2978 --0.0325 0.0847 --0.2908 --0.0208 0.0883 --0.2673 
B' --0.0521 --0.0426 --0.1474 --0.0734 --0.0601 --0.1873 --0.0628 --0-0681 --0.1692 
C' 0.0000 0.0000 0.0000 . 0.0000 0.0000 0-0000 0.0000 0.0000 0"0000 
D' --0.0078 --0.1550 0-1004 --0.0337 --0.1508 0 .1035  --0.0276 --0.1471 0-1221 
E' 0.0442 --0.1149 0-2978 0.0325 --0.0847 0.2908 0-0328 --0.0864 0"2938 

20x- -y  = m 1 , ] 
20y+z  = m 2, [ (4) 
x + 20z ---- m 3 . 

This mesh is sufficiently fine to resolve the  max ima  
but  not  so fine t h a t  the  rough location of the  max ima  
requires a n  undue  amoun t  of computing.  I t  also leads 
to greatest  common divisors (Haup tman  & Karle,  
1953, equat ion  (29)ff.) which rarely exceed uni ty.  
Using the  largest, two hundred  values of Chkz (Haupt-  
man  & Karle,  1953, equat ion (12)ff.), the  one thou- 
sand largest max ima  of the Fourier  series were ob- 
tained,  ar ranged roughly  according to size. These one 
thousand  points  could have been fur ther  refined and 
reweighted according to the procedure a l ready de- 
scribed. However,  this would have been prohibi t ively  
expensive and  t ime-consuming for the procedure as 
developed for I.B.M. equipment .  Instead,  i t  was as- 
sumed t h a t  the  bonded C-C distance was between 
1.1 and 1.7 /~ and t h a t  the molecular s t ructure  was 
roughly  the planar ,  double-hexagon shape. These as- 
sumptions,  toge ther  with the assumption of crystal  
symmet ry ,  were sufficient to lead to a unique choice 
of twen ty  points* defined by their  m triples, (4), 
shown in Table 1. To the approx imat ion  involved, the  
or ienta t ions  of the  two molecules were the  same as 
those reported by Abrahams et al. (1949). The co- 
ordinates  corresponding to the ten  m triples of Table 1 
related to molecule I are listed in the f i r s t  three 
columns of Table 2. The" next  three columns were 
obta ined  from the  approximate  coordinates  by the 
ref inement  procedure described in the previous paper  
( H a u p t m a n  & Karle,  1953, equat ion (37)). By  selecting 
a new origin in molecule I, giving another  row in the 
in te ra tomic  vector  matr ix,  and applying the refine- 
men t  procedure to the  coordinates referred to the new 
origin, the last  three columns of Table 2 were obtained.  

* The 400 interatomic vectors based upon these twenty 
triples were computed and found among the 1000 largest 
maxima. All but 60 were found among the first 500 maxima. 
130 occurred exactly; 158 occurred with one m value in error 
by unity; 96 occurred with two m values in error by unity; 
and 16 occurred with all three m values in error by unity. 
This distribution is to be expected on the basis of a simple 
statistical argument. 

The discrepancies between the  two ref inements  are a 
consequence of the  l imita t ions  of the me thod  and the  
inaccuracies of the  data .  Table 3 shows a comparison 

Table 3. Bonded distances obtained f rom the approximate 
coordinates in Table 2 and the averages of the two sets 

of refined coordinates in Table 2 

The values of the lattice parameters which were used were 
a----8.235, b----6.003, c----8.658 A and /~-----122 ° 55" 

(Abrahams et al., 1949). All values in .~mgstrbm units. 

Approximate Refined 
AB 1.229 1-397 
BC 1.538 1-380 
CD 1-639 1.445 
DE 1.133 1.343 
EA" 1.434 1.398 
A'B" 1.639 1.420 
B'C" 1.133 1-380 
C'D" 1-298 1-444 
D'E" 1.538 1.397 
E'A 1.265 1.352 
CC" 1"434 1"380 
Av. 1"389 1.394 
Av. dev. 0.161 0.025 

of the bonded distances obta ined from the approximate  
and  refined coordinates of Table 2. The average 
deviat ions  show clearly the  improvement  result ing 
from the  refinement.  The results for molecule I I  are 
similar to  those which have  been presented for mole- 
cule I. 

I t  would have been of interest  to  refine the  coor- 
dinates in molecule I referred to each of the  ten 
possible origins in molecule I,  and similarly with 
molecule I I .  The average of these results would be 
expected to be sufficiently accurate  to permi t  a more 
significant comparison with the results of Abrahams  
et al. (1949). This was not  done, however, because of 
the  expense and  t ime involved, as well as the fact  t h a t  
recent developments  in the  appl icat ion of s ta t is t ica l  
methods  to  the  direct  de te rmina t ion  of phase hold 
promise of more efficient procedures. 

Concluding remarks 

The results of this paper  indicate  t h a t  the  s tat is t ical  
methods  and  the  procedure for locating the  pr incipal  
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maxima of a Fourier series are sound. I t  is also clear 
tha t  formula (1) is capable of resolving the maxima 
corresponding to interatomic vectors. 

The statistical procedure in vector space constitutes 
a direct method for at tacking structure problems. The 
validity of these statistical concepts, coupled with the 
attractiveness of working directly in coordinate space, 
indicate the direction of future developments, namely, 
the search for probability distributions for the phases 
of the structure factors as well as for the atomic coor- 
dinates, rather than the interatomic vectors. 

The computations of this paper were performed by  
Mr Peter O'Hara of the Computation Laboratory of 
the National Bureau of Standards. His cooperation is 
gratefully acknowledged. 
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A Three-d imens iona l  Coordinate Model for Demonstrat ion  
of Inorganic Crystal Structures 

BY A. J. E. WELCH 
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(Received 15 January 1953 and in revised forra 29 January 1953) 

A t ransparent  plastic framework is described in which coloured pins m a y  be inserted to show the 
arrangements  of a toms in simple uni t  cells. 

Numerous types of three-dimensional model have been 
devised to show arrangements of atoms in crystal 
lattices, but few are quickly adaptable to the s tudy of 
symmetry  or coordination relationships in a wide 
variety of structures. Most X-ray crystallographers 
have at some time coveted a three-dimensional black- 
board. 

A model of the type shown in Fig. 1 has proved 
useful, in both research and teaching, for setting out 
atom positions in simple inorganic structures, partic- 
ularly those belonging to the cubic and tetragonal 
systems. I t  comprises sheets of clear 'Perspex', ~ in. 
in thickness, each having a coordinate 'net '  of small' 
holes drilled at suitable intervals. Successive sheets 
are held at regularly spaced intervals by nuts and 
washers on threaded brass rods; the rods are con- 
veniently mounted in a heavy base-plate of thick 

'Sinclanyo' sheet. Atom eentres are marked by brlght]y 
coloured map-marking pins dropped into the holes; 
such pins are available in a variety of sizes, shapes, 
and colours from large stationers. The pins are con- 
veniently dropped into position by means of a long 
pair of tweezers. The particular model shown in Fig. 1 
has a cubic array of holes, and was originally designed 
to depict a single unit cell of the spinel structure. 
The holes are drilled to a square pat tern at 1 in. 
intervals, and the upper surfaces of successive sheets 
are 1 in. apart. Nine sheets, each containing nine rows 

of nine holes, provide all the coordinates required to 
set up the ideal spinel cell, in which all the atom 
coordinates are multiples of ~. Many "simpler cubic 
ceils can be shown on the same framework. Tetragonal 
cells can be accommodated by adjusting the spacing 
of the sheets to the required c/a ratio, the c axis being 
set perpendicular to the plane of the sheets. 

Another similar model has been constructed for 
hexagonal (including rhombohedral) structures, having 
the sheets drilled to provide sixfold symmetry;  the 
sheets again contain nine rows of holes in each of two 
directions 120 ° apart, allowing atom coordinates to 
be set off in multiples of 1 s in the conventional hex- 
agonal cell. 

The models are particularly convenient in showing 
coordination relationships clearly. They are proving 
useful in research in the examination of ionic environ- 

ments in ~erromagnetlc solids; possible modes of inter- 
action between ions can be visualized much more 
clearly from such models than from diagrams or lists 
of coordinates. In teaching work numerous typical  
structures can be built up at little expense. Random 
and ordered replacement in solid solutions are readily 
contrasted on the lecture bench by interchanging a 
few coloured pins. By running wires or coloured threads 
through rows of holes to represent symmetry  axes, 
the operation of the different types of axes (including 
screw axes) is effectively demonstrated; pins are in- 


